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Diffusion constant for the repton model of gel electrophoresis
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The repton model is a simple lattice model of the “reptation” motion by which DNA diffuses through a gel
during electrophoresis. In this paper we show that the model can be mapped onto a system consisting of two
types of particles with hard-sphere interactions diffusing on a one-dimensional lattice. Using this mapping we
formulate an efficient Monte Carlo algorithm for the model which allows us to simulate systems more than
twice the size of those studied before. Our results confirm scaling hypotheses which have previously been put
forward for the model. We also show how the particle version of the model can be used to construct a transfer
matrix which allows us to solve exactly for the diffusion constant of small repton systems. We give results for
systems of up to 20 reptonsS1063-651X97)13909-5

PACS numbds): 87.10+€, 82.45+z

[. INTRODUCTION traveled by any particular component of the mixture is a
measure of its length, and the final gel can be dissected into

Gel electrophoresis is an experimental tool of great 'm'pieces 0 refine the DNA by length.

portance in the ever-growing md_ustnes of genetics and poly The basic mechanism responsible for the length depen-
mer research. It allows an experimenter to separate a mixtur - ) .
. L . ence of the migration rate was first described by de Gennes
of polymer strands by length or, in combination with sample . oo .
1]. The important point is that the persistence length of
strands of known lengths, to measure the lengths of stran o . .
i the mixture. However. despite the develobment of soohis NA under the conditions of the experiment is between
- Flowever, P! velop PS3hout 400 and 800 A, which is of the same order of magni-

ticated techniques for exploiting electrophoresis in the Iabo’[ude as the pore size of the gel. This means that the agarose
ratory, the physics behind the method is still imperfectly un-

strands in the gel effectively prevent movement of a strand
derstood. A number of efforts have been made to model thgs pnA transversely to its length, so that it migrates prima-
diffusion of polymers in gels, with varying degrees of suc-jjy py a longitudinal slithering motion, for which de Gennes
cess. In this paper we examine one of the simplest but alsgpined the term “reptation.” The repton model is one of the
most successful of these, the repton model, which is primasimplest models of the reptation process. It was invented in
rily of use as a model of DNA electrophoresis in agarose1987 by Rubinsteiri2] as a model of the dynamics of en-
gels.(It does not model the behavior of most other polymerstangled polymers, and co-opted as a model of DNA reptation
very well, nor the behavior of DNA in polyacrylomide gels. by Duke[3]. Briefly the model is as followS/A more thor-
Although the subject of many functional refinements andough exposition can be found, for example, in Rdf.)
improvements over the years, the basic DNA agarose-gel The repton model simulates the movement of a single
experiment is in essence a very simple one. A gel is formedtrand of DNA through the gel. The strand is represented as
by adding agarose powder to a warm buffer solution, pouringg numberN of points, joined together by lines—see Fig.
the mixture into the gel box, and allowing it to cool, where- 1(a). The points are confined to the squares of a two-
upon the agarose strands cross-link to form a threedimensional rectangular lattice which is represented by the
dimensional web with a typical pore size of about 1000 A.grid of lines in the figure. The points in the strand are known
The DNA is placed in solution with more of the same buffer,as “reptons,” and successive reptons in the strand may lie
from which it gains an electric charge, and is then injecteckither in the same square, or in adjacent ones, but may not be
into the gel. An electric field, typically on the order of a few further apart than this. This ensures that the DNA has some
volts per centimeter, is applied horizontally across the boxglasticity but is not infinitely stretchy. The lattice squares
and the charged DNA migrates under its influence throughiepresent the pores in the agarose gel, so that the lattice
the gel. It is found that the rate of migration depends principarameter is also the pore size. The distance between suc-
pally on three factors: the pore size of the gehich in turn  cessive reptons in the chain represents the persistence length
depends on the concentration of the original agarose solwsf the DNA (a few hundred base pairs, or about 400 to 800
tion), the magnitude of the applied electric field, and, cru-A, as mentioned aboyeand since this is limited to at most
cially, the length of the DNA strands. Longer DNA strands one lattice spacing, it is implicit in the model that the persis-
are impeded more by the agarose in the gel and travel slowetence length and the pore size are approximately euas.
so that after the experiment has been running for some timor this reason that the repton model makes a poor approxi-
(typically a few houry the initially homogeneous DNA mix- mation to the behavior of DNA in other types of gel, or of
ture will have separated out along a “lane” in the gel box, other polymers in agarose.
according to the lengths of its constituent parts. The distance The use of a two-dimensional lattice in the model appears
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at first to be problematic. Clearly the real DNA moves in a Some of the earliest analytic work on the repton model
three-dimensional space. However, as we will see in Sec. Iwas performed by van Leeuwen and Kooimgfi, who
the behavior of the model is actually independent of the dishowed that under the assumption of periodic boundary con-
mensionality of the lattice, so a two-dimensional one is asjitions the limiting value oD asN—o is 1/(3N?). Later,

good as any other. _ _ Prehofer [8] demonstrated rigorously that this limiting be-
In order to simulate the reptation motion of the DNA, the hayior holds also for the repton model without periodic
following dynamics is imposed on the repton chain. boundary conditions. In practice, however, the large finite-

(i) A repton in the interior of the chain may move to one sjze effects present in the model mean that the measured
of the adjacent squares on the lattice, provided that one of itS3jue of D is far from this limit. In our calculations we

imr_ned_ia;e neig_hbors in the chain is already in the square @sually quote figures fob N2, which should have a limiting
which it is moving, and the other is in the square which ityg),e of .
Iea\(fes. ) ~In 1991, Widomet al.[9] took an important step forward

(ii) The two reptons at the ends of the chain may move inyy showing that it was possible to solve the repton model
any direction to an adjacent square, provided that such gyactly for finite values of the chain lenghh using a com-
move does not take them more than one lattice spacing awaynation of a transfer matrix method with a perturbation
from their neighboring repton on the chain. These two rulegheoretic analysis. The matrix used is essentially the stochas-
ensure that the chain always diffuses along its own lengthjc or Markov matrix for the dynamics of the model, which
and that neighboring reptons on the chain are never morgas one row and one column for each possible state of the
than one lattice spacing apart. The time-scale for the modelhain. As discussed in Sec. IV, this matrix, in its most com-
is set by stlpulatlng that each repton, dnvgn by random therpact form, has rank ™8, Unfortunately this makes the re-
mal fluctuations, should attempt to move in each of the fouryired diagonalization operation prohibitively costly for all
possible directions once on average per unit time. Each at the shortest repton chains. Widahal. carried out the
tempted move is accepted and carried out if it is allowed by:g|cyjation for values oN up to 5, and these results were
the rules above, otherwise it is rejected and the chain stays @§er extended by Szleifer and Bisseling No=12 using a
It was. special-purpose computgt0].

Notice that all a_llowed moves proceed at the same rate; |, this paper we propose a mapping of the repton model
there are no energies in the repton model and no Boltzmang, 5 one-dimensional particle model with two types of
weights. The model is entirely entropy-driven. If we wish 0 paricles possessing hard-sphere repulsion. Using this map-
model the migration of the DNA in the applied electric field ping we show that the repton model can be solved exactly by

we need to introduce a bias in the selection probabilities foinqing only the one eigenvector corresponding to the largest
moves in one particular direction, usually theaxis. How- eigenvalue of a much smaller matrix, one with rank

ever, if, as the experimentalists are, we are primarily inter(NJrl)ZN—z. Given the relatively conservative size of this

ested in the rate of migration in a given electric fiel&, it matrix and the fact that finding one eigenvector is a lot sim-
is not necessary to introduce such a bias. The valugiof  pjer than diagonalizing the whole matrix, we have been able
the low-field limit can be calculated instead from the zero-yging this method to extend the exact solution of the model
field diffusion constanD using the Nernst-Einstein relation: gy chains of up to twenty repton@orresponding to DNA
strands of about 4 Kb using only conventional computing
D= lim —— (1)  resources.
eoNE’ Of the numerical studies which have been performed on
the model, probably the most comprehensive to date are
This is the approach we will be taking in this paper, and ourthose of Barkema, Marko, and Widdr1], who used a mul-
calculations will concentrate on the evaluation of the diffu-tispin coded algorithm running on a supercomputer to simu-
sion constant, in the knowledge that the valuevofan al- late the model for values dfl up to 100. Our projection of
ways be calculated from it in a simple fashipEquation(1)  the model onto a one-dimensional particle system has also
should be valid as long as the proddE of the chain length led us to a more efficient Monte Carlo algorithm for the
and the electric field strength is below a certain vgkbleFor ~ model’'s simulation, which has allowed us to extend these
DNA fragments of lengths for which agarose is the gel me-simulation results tdN =250, again using only conventional
dium of choice, this limits the electric field to about 10 computing resources.
V/cm, and experiments have confirmed this figlég Typi- The outline of this paper is as follows. In Sec. Il, we
cal laboratory procedure employs fields comfortably withindescribe the mapping introduced by DUl& of the repton
this range, implying that Eq(1) should be an acceptable model onto a one-dimensional chain model, and then intro-
approximation] duce our further mapping onto a model containing two types
The repton model ignores many important features of thef particles diffusing on a one-dimensional lattice. In Sec. IlI
dynamics of the real DNA, such as excluded volume effectsve describe our simulations of this version of the model. In
due to the finite space occupied by the DNA, self-repulsionSec. IV we make use of the mapping to define our reduced
effects due to its charge, the effects of counterions, mechaniransfer matrix and from that matrix extract exact results for
cal properties of the DNA, and inhomogeneities in the gelthe diffusion constant of the model for valuesiiup to 20.
Surprisingly, however, it gives results in fairly good agree-We also speculate on the connection between the particle
ment with experimenf5], leading us to believe that it may version of the repton model and the so-called “asymmetric
well capture many of the essential features of the dynamicexclusion models.” Some simple versions of these models
of DNA in agarose. have been solved analytically for &l [12,13, which leads
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FIG. 2. The mapping of the projected repton model onto a par-
FIG. 1. (@ The repton model of gel electrophoresis. The ticle model. There are two types of particle, which we |lalednd
points—reptons—are connected together in a chain, and consecB- No two particles may coexist on the same lattice site, but other-
tive points in the chain must occupy adjacent squares on the latticavise they are free to diffuse about the lattice.

or the same squaréb) The projected repton model described in . .
Sec. II. The arrows indicate the possible moves. with three or even more dimensions. We conclude that the

dynamics of the model is independent of the dimensionality
of the original lattice, as we mentioned briefly in the preced-
?ng section.

The state of the projected repton model can be specified

by giving thex coordinate of each of thél reptons in the
Il. THE PROJECTED REPTON MODEL chain. Alternatively, as Fig. (b) makes clear, we could
specify it by describing in turn the —1 links in the chain—

The fundamental quantity which we would like to calcu- the lines between adjacent reptons in the figure—each of
late using the repton model is the rate of migration of DNA,which can be in one of three states: sloping upwards to the
as a function of its length, under the influence of an electrideft, sloping upwards to the right, or level. In order to com-
field E applied, for example, horizontally in Fig(d. Aswe  pletely pin the chain down, we would also have to specify
pointed out in the preceding section, this can be calculatethe absolute position of one of the reptons—say the leftmost
using the Nernst-Einstein relation, Ed), from a knowledge one—but since the model is translationally invariant, all its
of the diffusion constant for the diffusion of the repton chainproperties can be calculated without knowledge of this vari-
in zero field. Since we are only interested in the movementble. In Fig. 2 we have made use of these new degrees of
of the chain along one axis, in this case thexis, itis only  freedom to create an alternative mapping of the model to a
necessary to consider ttrecomponent of each repton’s po- one-dimensional particle model. In this mapping each of the
sition. In Fig. 1b) we have plotted thigx component for the N-—1 links corresponds to a site on a new lattice, and each
state of the chain depicted in Figlal as a function of posi- site can be in one of three states of occupation, depending on
tion along the chain from one end to the other, and this plothe state of the corresponding link. Sites corresponding to
contains all the information we need about that state. Thisinks which slope upwards to the right are occupied by a
projected form of the repton model was first introduced byparticle of one type, which we call typ&, and those corre-
Duke [3], and it is this form which was used by Widom sponding to links which slope upwards to the left are occu-
et al. to construct their transfer matrix, and also by Barkemapied by a different type of particle, ty®. Sites correspond-
et al. to perform simulations of the model’s properties. ing to horizontal links are left empty. It is not hard to show

The restriction that consecutive reptons in the chain camhat the dynamics of the particles is as followis: Particles
lie only in the same or adjacent squares on the lattice transn the interior of the chain are conservéii) no two particles
lates to the restriction that the positionsf adjacent reptons may coexist at the same site, regardless of their tyfiesa
in the projected model can differ by at masty/2, although particle adjacent to an empty site can move to that ite;
we will find it more convenient to measuxein units of this  a particle at one of the ends of the chain can fall off the chain
quantity, so that the values are always integers and adjaceand vanish{v) if one of the end sites on the chain is empty,
ones may differ by only+1, 0, or—1. The dynamics of the a new particle of either type can appear there. As before, all
projected model in zero electric field also can be derived as possible moves are attempted once each on average per unit
simple projection of the dynamics of the original model:  time. Moves which violate none of the rules above are al-

(i) A repton in the interior of the chain may move up or ways accepted. All others are rejected. The particles are in
down by one step provided that one of its two neighbors issome ways akin to fermions, but their dynamics is com-
already at the level to which it is moving, and the other is atpletely classical in nature, so we prefer to regard them sim-
the level which it leaves. ply as hard-sphere classical particles.

(i) The two reptons at the ends of the chain may move As far as the diffusion of the repton chain is concerned,
either up or down, provided this does not take them morave can show that if a particle of typk enters the system at
than one step away from their neighbors. the left-hand end and migrates all the way to the right, and

As with the two-dimensional version of the model, eachfalls off, then the average position of the chain moves one
possible move of each repton is attempted on average onetep in the positivex direction. It also moves one step in the
per unit time, and any attempted move is accepted providegdositive x direction if a particle of typeB moves across the
it does not violate any of the rules above. If it does, the movesystem from right to left. Moves in the opposite directions
is rejected and the chain remains unchanged. correspond to motion of the average position in the negative

Notice that this projection of the repton model onto the x direction.
axis would work just as well had we started with a lattice By employing this particle mapping of the repton model,

x=0, 1, 2, 3, 4, 5 6, .. 12 3 4 5 6 7 8 9 101112131415

us to hope that a similar solution of the repton model may b
possible. In Sec. V we give our conclusions.
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we have been able to improve considerably on previous cal- 1 g T
culations of the model, both numerical and exact. NN

[lI. NUMERICAL CALCULATIONS I *e,

If we were to simulate our particle version of the repton
model directly, employing the dynamics described above, the
resulting calculation would be entirely equivalent to, and no
faster than, a direct simulation of the projected repton model. 0.1 = - .
However, we can speed the calculation considerably by ob- L x ]
serving that, in the zero-field case we are considering here, [ \Li ]
the dynamics of the two types of particlés andB, is iden- - }
tical. Whether a particular particle is of tygeor of typeB e el .
makes no difference whatsoever to the probability of the sys- 10 100
tem taking a particular path. Thus, it is possible to carry out system size N
the entire simulation without assigning any types to any of L
the particles—we can assign types to them at the end insteag FIG. 3. Re?ults Rr:thzesglffusmn co%?tala_to: the repton modell
In fact, the best statistics are derived by making in turn everyOr systems of up t reptons. The circles are exact results
possible assignment of particle types to particles and averag?lcmatEd using the transfel_r matrix method of Sec. IV. The squares
; re numerical results obtained by the Monte Carlo method de-
ing over all of them. If we denote by,_, and n,_ the

. - scribed in Sec. lll. We have plotted the data[‘mz—% againstN
number of particles of typ& which pass through the system on logarithmic scales in order to test the scaling form hypothesized

from left to right and from right to left, respectively, during j, Ref. [11]. The dashed line indicates the slope expected if this
the course of our simulation, and similarly for particles of scajing form holds.

type B, then the mean square distan@?) traveled by the

repton chain in thet direction, where() indicates an average \yere of a variety of lengths up to a maximum of around10
over all possible assignments of particle types, is Monte Carlo steps for the largest systems. For each run we
discarded the first 10% of the data to allow for equilibration.
The results of the simulations are shown in Fig. 3. Barkema,

DN - 1/3
o

(d)=([(na_.+ng_)—(Na_+ng_)]?

=([(Na_—Ng_)—(Na_—ng_)1? Marko, and Widom[11] have conjectured, on the basis of
) 5 numerical results for systems of up kb= 100 reptons, that
=((Na_.—Ng_))+{(Na_—Np_)%) DN?- 1 scales for large system sizesNs?>. This scaling

_ is indicated as the dashed line in the figure. As the graph
{(Na-Hng)) +{(Na+Np.)) shows, our results for values bf above 100 appear to con-
=n_+n_. (2)  firm this conjecture.

The third line here follows from the statistical independence
of the numbers of particles of each type, and the fourth line
follows from the properties of random walks in one dimen- The L- and R-type particles introduced in the preceding
sion. The variables_, andn_ in the last line are the total section are interesting in their own right, since, as we now
numbers of particles passing across the system in each direshow, they lead to an exact solution of the model for small
tion during the course of the simulation. The diffusion con-values ofN. Their dynamics is almost the same as that of the
stant in thex direction is related t¢d?) by A and B particles of the preceding section: they are con-
served, can hop either left or right into empty spaces, and
(d?) particles at the end of the chain can fall off altogether, and all
D= ot 3) these moves are attempted once on average per unit time.
However, if one of the sites at the end of the chain is empty,
wheret is the length of timgas defined in Sec) for which @ new particle appears and fills it on averaggce per unit
the simulation ran. time, rather than once as before. To see this, recall that par-
In order to calculaten_, andn_, we need to count the ticles of typesA andB both attempted to fill empty end sites
number of particles falling off the right-hand end of the sys-once each on average per unit time in our previous version of
tem which entered from the left, and the number falling offthe model. The total rate of attempted particle entry at either
the left which entered from the right. Those which enter andend is therefore two particles per unit time. Other than this,
leave at the same end make no contribution. Thus we need tbings remain as before: all attempted moves are accepted if
keep a record for each particle in the system of whether ithey do not violate any of the dynamical rules, otherwise
entered at the left- or the right-hand end. We can do this byhey are rejected.
labeling each with either anl’” or an “ R,” which in effect The total rate then at which particles of typdall off the
means that we have two types of particles again. right-hand end of the chain is simply one times the density of
Using a multispin coded program which simultaneouslyL particles at the rightmost site, and similarly for particles of
performs 32 simulations using the algorithm described herdype R at the left-hand end. Since the system is, on average,
we have calculated the value of the diffusion constant for the&eompletely left-right symmetric, we can define a density
repton model for systems of up =250 reptons. The runs function p(i) such that

IV. EXACT CALCULATIONS
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pu(i)=pr(N=1)=p(i), (4) TABLE I. Values of DN? calculated using the transfer matrix
method described in the text. The values are exact to the accuracy
wherep, (i) andpg(i) are the densities of the two types of quoted.
particles at thath site (counting, let us say, from the left
Now using Egs(2) and(3) we can write the diffusion con-
stant as

DN? N DN? N DN?

1.000000 9 0.703951 15 0.596297
0.926984 10 0.678924 16 0.585081
0.864908 11 0.657549 17 0.574996
0.812065 12 0.639096 18 0.565874
0.769057 13 0.623006 19 0.557579
0.733582 14 0.608851 20 0.550001

n_+n_ 2p(1)t
D=——=—% =, )

0o ~NOO O~ W

It would be possible to calculai®(1), thedensity of the
minority particles at the first site on the lattice, using a
Monte Carlo technique. However, the results Ebwould be

less accurate than those calculated with the methods of thgyse optained by Widorat al. [9] and by Szleifer and Bis-
preceding section. On the other hand, E5).does lend itself seling[10]. Those fortN=13 up to 20 are new. No errors are
to exact calculations. Notice that the number of states of th%iven in the table; the figures are exact to the quoted accu-

model with theL. andR particles is considerably smaller that racy.

the number of states of the one with theandB particles. The functionp(i) is also interesting in its own right. In
The reason is that, since all particles of typenter from the £y 4 we have plotted its value for systems of site 20

left, all type R ones from the right, and the two cannot passsy 100, and 200 on linear and logarithmic scales, calculated
one another, all lawful states of the system consist of at mos{ymerically. AsN increases, the curves on the linear plot
two domains, one on the left containing orlyparticles and  55near to become more and more like a straight line with
vacancies, and one on the right containing oRlyarticles  ghort curved regions at each end. It seems possible that the

and vacancies. Thus, once we know the position of the lingsymptotic form of the function is linear, with end effects
which separates these two domains, the state of any particu-

lar site is completely determined if we know only whether it 0.8
is occupied or not. There afd possible positions for the
line, and hencé2N~1 is an upper bound on the number of
states of the system. In fact the actual number of states turns
out[14], as we mentioned in Sec. |, to b ¢ 1)2Y~2. This
figure is considerably smaller than thé&' 3 states of the
system with theA and B particles, or equivalently of the
ordinary projected repton model, which Widoat al. used

to construct their transfer matrix. This suggests that it might
be possible to construct a new smaller transfer matrix which
would allow us to calculate the diffusion constant of the
model exactly for larger values .

particle density p(i)
e o
' N

e
&

The construction of such a matrix turns out to be charm- 0.0
ingly straightforward. The matrix possesses one row and one
column for each state of the system with theand R-type position in chain /N
particles. Its off-diagonal elements are zero except for a .
sparse set of elements connecting pairs of states which are 10
accessible to one another via the dynamics of the model. The i
diagonal elements are fixed to ensure overall particle conser- 107
vation. The slowest-decaying eigenmode of this matrix rep- < ;
resents the equilibrium occupation probabilities of each of 2102 |
the states of the chain, and a simple linear combination of its ‘@
elements gives the density of particles of either type at any % 10° L
site, the densityp(1) being a particular case. We have cal- 2
culated the eigenvector of this mode numerically for systems %104 [
with sizes fromN=3 up to N=20. Since the matrix is
sparse, the quickest method of doing this is simply by re- 0 L

peated multiplication into an initial trial vector. In fact, for E L o
each system size studied, we have used two trial vectors, 001 01 1
chosen so that the value p{1) calculated from them con-
verges towards the equilibrium value from opposite direc-
tions, ensuring that we have rigorous bounds on our values, g|G. 4. The functiorp(i) defined in Eq(4), plotted for systems
as well as an absolute measure of convergence. The value gf size N=20, 50, 100, and 200 ofa) linear scales andb) loga-
p(1) can then be used in E) to calculate the diffusion rithmic ones. Close to the end of the repton chamalli) p(i)
constant. The resultant values fDN? are given in Table |  appears to vary as a power law withThe measured exponent of
and also shown in Fig. 3. The values férup to 12 confirm  the power law is 2.760.03.

position in chain /N
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whose region of influence tends to some finite limit. Thewe have calculated values bf for systems of up tdN =250
logarithmic plot sheds further light on the behavior at thepersistence lengths. These results confirm hypotheses put
ends of the chain. As it shows(i) appears to become forward earlier concerning the scaling bf with the system
power-law in form for smali asN becomes large. The ex- size.
ponent of the power law is measured to be 2-1603. We have also employed our particle version of the repton
Consideration op(i) also offers a hint of a possible com- model to construct a transfer matrix whose dominant eigen-
plete analytic solution of the repton model. The particle ver-vector is directly related to the value of the diffusion con-
sion of the model considered here is a particular case of atant. We have numerically calculated this eigenvector, and
class of models known as asymmetric exclusion models. Ifence extracted exact values rfor systems up tdN=20.
recent work, Derrideet al. [12] and independently Stinch- Finally, we have drawn a connection between our particle
combe and Scha [13] have found exact analytic solutions version of the repton model and the asymmetric exclusion
for the density function equivalent to ogfi) for a number models which have been solved exactly by Derrida
of models of this class for all values df. The models they et al. and by Stinchcombe and SalauWe conjecture that it
solved are simpler in a number of respects than the modehay be possible to use the techniques they employed, along
studied in this paper, and applying their techniques to ouwith the theory developed in this paper, to find a complete
model would not be a trivial task. However, E®) tells us  analytic solution for the diffusion constant of the repton
that, should such a solution prove possible, we would immemodel for all system sizes.
diately have an expression for the diffusion constant of the Note addedRecently we became aware of REE5], in
repton model for all values dfl. It is certainly an intriguing  which exact values for the diffusion constant of the repton
prospect. model are calculated for values Nfup to 20 using a method
entirely different from the one described here. We thank
V. CONCLUSIONS Michael Praofer for bringing this to our attention.
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