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Diffusion constant for the repton model of gel electrophoresis

M. E. J. Newman
Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501

G. T. Barkema
HLRZ, Forschungszentrum Ju¨lich, 52425 Ju¨lich, Germany

~Received 10 March 1997!

The repton model is a simple lattice model of the ‘‘reptation’’ motion by which DNA diffuses through a gel
during electrophoresis. In this paper we show that the model can be mapped onto a system consisting of two
types of particles with hard-sphere interactions diffusing on a one-dimensional lattice. Using this mapping we
formulate an efficient Monte Carlo algorithm for the model which allows us to simulate systems more than
twice the size of those studied before. Our results confirm scaling hypotheses which have previously been put
forward for the model. We also show how the particle version of the model can be used to construct a transfer
matrix which allows us to solve exactly for the diffusion constant of small repton systems. We give results for
systems of up to 20 reptons.@S1063-651X~97!13909-5#

PACS number~s!: 87.10.1e, 82.45.1z
im
oly
tu
le
n

his
bo
n
th
c
al
m
s

er
.
n
-g
e

in
e-
ee
Å
r

te
w
ox
g
c

o
ru
ds
w
tim

x
n

a
into

en-
nes
of

en
ni-
rose
nd
a-
s
e
in

-
ion

gle
as

g.
o-
the
wn

lie
t be
me

es
ttice
uc-
ngth
00
t
is-

oxi-
of

ars
I. INTRODUCTION

Gel electrophoresis is an experimental tool of great
portance in the ever-growing industries of genetics and p
mer research. It allows an experimenter to separate a mix
of polymer strands by length or, in combination with samp
strands of known lengths, to measure the lengths of stra
in the mixture. However, despite the development of sop
ticated techniques for exploiting electrophoresis in the la
ratory, the physics behind the method is still imperfectly u
derstood. A number of efforts have been made to model
diffusion of polymers in gels, with varying degrees of su
cess. In this paper we examine one of the simplest but
most successful of these, the repton model, which is pri
rily of use as a model of DNA electrophoresis in agaro
gels.~It does not model the behavior of most other polym
very well, nor the behavior of DNA in polyacrylomide gels!

Although the subject of many functional refinements a
improvements over the years, the basic DNA agarose
experiment is in essence a very simple one. A gel is form
by adding agarose powder to a warm buffer solution, pour
the mixture into the gel box, and allowing it to cool, wher
upon the agarose strands cross-link to form a thr
dimensional web with a typical pore size of about 1000
The DNA is placed in solution with more of the same buffe
from which it gains an electric charge, and is then injec
into the gel. An electric field, typically on the order of a fe
volts per centimeter, is applied horizontally across the b
and the charged DNA migrates under its influence throu
the gel. It is found that the rate of migration depends prin
pally on three factors: the pore size of the gel~which in turn
depends on the concentration of the original agarose s
tion!, the magnitude of the applied electric field, and, c
cially, the length of the DNA strands. Longer DNA stran
are impeded more by the agarose in the gel and travel slo
so that after the experiment has been running for some
~typically a few hours!, the initially homogeneous DNA mix-
ture will have separated out along a ‘‘lane’’ in the gel bo
according to the lengths of its constituent parts. The dista
561063-651X/97/56~3!/3468~6!/$10.00
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traveled by any particular component of the mixture is
measure of its length, and the final gel can be dissected
pieces to refine the DNA by length.

The basic mechanism responsible for the length dep
dence of the migration rate was first described by de Gen
@1#. The important point is that the persistence length
DNA under the conditions of the experiment is betwe
about 400 and 800 Å, which is of the same order of mag
tude as the pore size of the gel. This means that the aga
strands in the gel effectively prevent movement of a stra
of DNA transversely to its length, so that it migrates prim
rily by a longitudinal slithering motion, for which de Genne
coined the term ‘‘reptation.’’ The repton model is one of th
simplest models of the reptation process. It was invented
1987 by Rubinstein@2# as a model of the dynamics of en
tangled polymers, and co-opted as a model of DNA reptat
by Duke @3#. Briefly the model is as follows.~A more thor-
ough exposition can be found, for example, in Ref.@4#.!

The repton model simulates the movement of a sin
strand of DNA through the gel. The strand is represented
a numberN of points, joined together by lines—see Fi
1~a!. The points are confined to the squares of a tw
dimensional rectangular lattice which is represented by
grid of lines in the figure. The points in the strand are kno
as ‘‘reptons,’’ and successive reptons in the strand may
either in the same square, or in adjacent ones, but may no
further apart than this. This ensures that the DNA has so
elasticity but is not infinitely stretchy. The lattice squar
represent the pores in the agarose gel, so that the la
parametera is also the pore size. The distance between s
cessive reptons in the chain represents the persistence le
of the DNA ~a few hundred base pairs, or about 400 to 8
Å, as mentioned above!, and since this is limited to at mos
one lattice spacing, it is implicit in the model that the pers
tence length and the pore size are approximately equal.~It is
for this reason that the repton model makes a poor appr
mation to the behavior of DNA in other types of gel, or
other polymers in agarose.!

The use of a two-dimensional lattice in the model appe
3468 © 1997 The American Physical Society
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56 3469DIFFUSION CONSTANT FOR THE REPTON MODEL OF . . .
at first to be problematic. Clearly the real DNA moves in
three-dimensional space. However, as we will see in Sec
the behavior of the model is actually independent of the
mensionality of the lattice, so a two-dimensional one is
good as any other.

In order to simulate the reptation motion of the DNA, th
following dynamics is imposed on the repton chain.

~i! A repton in the interior of the chain may move to on
of the adjacent squares on the lattice, provided that one o
immediate neighbors in the chain is already in the squar
which it is moving, and the other is in the square which
leaves.

~ii ! The two reptons at the ends of the chain may move
any direction to an adjacent square, provided that suc
move does not take them more than one lattice spacing a
from their neighboring repton on the chain. These two ru
ensure that the chain always diffuses along its own len
and that neighboring reptons on the chain are never m
than one lattice spacing apart. The time-scale for the mo
is set by stipulating that each repton, driven by random th
mal fluctuations, should attempt to move in each of the f
possible directions once on average per unit time. Each
tempted move is accepted and carried out if it is allowed
the rules above, otherwise it is rejected and the chain stay
it was.

Notice that all allowed moves proceed at the same r
there are no energies in the repton model and no Boltzm
weights. The model is entirely entropy-driven. If we wish
model the migration of the DNA in the applied electric fie
we need to introduce a bias in the selection probabilities
moves in one particular direction, usually thex axis. How-
ever, if, as the experimentalists are, we are primarily int
ested in the ratev of migration in a given electric fieldE, it
is not necessary to introduce such a bias. The value ofv in
the low-field limit can be calculated instead from the ze
field diffusion constantD using the Nernst-Einstein relation

D5 lim
E→0

v
NE

. ~1!

This is the approach we will be taking in this paper, and o
calculations will concentrate on the evaluation of the dif
sion constant, in the knowledge that the value ofv can al-
ways be calculated from it in a simple fashion.@Equation~1!
should be valid as long as the productNE of the chain length
and the electric field strength is below a certain value@5#. For
DNA fragments of lengths for which agarose is the gel m
dium of choice, this limits the electric field to about 1
V/cm, and experiments have confirmed this figure@6#. Typi-
cal laboratory procedure employs fields comfortably with
this range, implying that Eq.~1! should be an acceptabl
approximation.#

The repton model ignores many important features of
dynamics of the real DNA, such as excluded volume effe
due to the finite space occupied by the DNA, self-repuls
effects due to its charge, the effects of counterions, mech
cal properties of the DNA, and inhomogeneities in the g
Surprisingly, however, it gives results in fairly good agre
ment with experiment@5#, leading us to believe that it ma
well capture many of the essential features of the dynam
of DNA in agarose.
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Some of the earliest analytic work on the repton mo
was performed by van Leeuwen and Kooiman@7#, who
showed that under the assumption of periodic boundary c
ditions the limiting value ofD as N→` is 1/(3N2). Later,
Prähofer @8# demonstrated rigorously that this limiting be
havior holds also for the repton model without period
boundary conditions. In practice, however, the large fini
size effects present in the model mean that the meas
value of D is far from this limit. In our calculations we
usually quote figures forDN2, which should have a limiting
value of 1

3.
In 1991, Widomet al. @9# took an important step forward

by showing that it was possible to solve the repton mo
exactly for finite values of the chain lengthN using a com-
bination of a transfer matrix method with a perturbati
theoretic analysis. The matrix used is essentially the stoc
tic or Markov matrix for the dynamics of the model, whic
has one row and one column for each possible state of
chain. As discussed in Sec. IV, this matrix, in its most co
pact form, has rank 3N21. Unfortunately this makes the re
quired diagonalization operation prohibitively costly for a
but the shortest repton chains. Widomet al. carried out the
calculation for values ofN up to 5, and these results wer
later extended by Szleifer and Bisseling toN512 using a
special-purpose computer@10#.

In this paper we propose a mapping of the repton mo
onto a one-dimensional particle model with two types
particles possessing hard-sphere repulsion. Using this m
ping we show that the repton model can be solved exactly
finding only the one eigenvector corresponding to the larg
eigenvalue of a much smaller matrix, one with ra
(N11)2N22. Given the relatively conservative size of th
matrix and the fact that finding one eigenvector is a lot si
pler than diagonalizing the whole matrix, we have been a
using this method to extend the exact solution of the mo
to chains of up to twenty reptons~corresponding to DNA
strands of about 4 Kb!, using only conventional computing
resources.

Of the numerical studies which have been performed
the model, probably the most comprehensive to date
those of Barkema, Marko, and Widom@11#, who used a mul-
tispin coded algorithm running on a supercomputer to sim
late the model for values ofN up to 100. Our projection of
the model onto a one-dimensional particle system has
led us to a more efficient Monte Carlo algorithm for th
model’s simulation, which has allowed us to extend the
simulation results toN5250, again using only conventiona
computing resources.

The outline of this paper is as follows. In Sec. II, w
describe the mapping introduced by Duke@3# of the repton
model onto a one-dimensional chain model, and then in
duce our further mapping onto a model containing two typ
of particles diffusing on a one-dimensional lattice. In Sec.
we describe our simulations of this version of the model.
Sec. IV we make use of the mapping to define our redu
transfer matrix and from that matrix extract exact results
the diffusion constant of the model for values ofN up to 20.
We also speculate on the connection between the par
version of the repton model and the so-called ‘‘asymme
exclusion models.’’ Some simple versions of these mod
have been solved analytically for allN @12,13#, which leads
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3470 56M. E. J. NEWMAN AND G. T. BARKEMA
us to hope that a similar solution of the repton model may
possible. In Sec. V we give our conclusions.

II. THE PROJECTED REPTON MODEL

The fundamental quantity which we would like to calc
late using the repton model is the rate of migration of DN
as a function of its length, under the influence of an elec
field E applied, for example, horizontally in Fig. 1~a!. As we
pointed out in the preceding section, this can be calcula
using the Nernst-Einstein relation, Eq.~1!, from a knowledge
of the diffusion constant for the diffusion of the repton cha
in zero field. Since we are only interested in the movem
of the chain along one axis, in this case thex axis, it is only
necessary to consider thex component of each repton’s po
sition. In Fig. 1~b! we have plotted thisx component for the
state of the chain depicted in Fig. 1~a! as a function of posi-
tion along the chain from one end to the other, and this p
contains all the information we need about that state. T
projected form of the repton model was first introduced
Duke @3#, and it is this form which was used by Widom
et al. to construct their transfer matrix, and also by Barke
et al. to perform simulations of the model’s properties.

The restriction that consecutive reptons in the chain
lie only in the same or adjacent squares on the lattice tra
lates to the restriction that the positionsx of adjacent reptons
in the projected model can differ by at mosta/A2, although
we will find it more convenient to measurex in units of this
quantity, so that the values are always integers and adja
ones may differ by only11, 0, or21. The dynamics of the
projected model in zero electric field also can be derived a
simple projection of the dynamics of the original model:

~i! A repton in the interior of the chain may move up
down by one step provided that one of its two neighbors
already at the level to which it is moving, and the other is
the level which it leaves.

~ii ! The two reptons at the ends of the chain may mo
either up or down, provided this does not take them m
than one step away from their neighbors.

As with the two-dimensional version of the model, ea
possible move of each repton is attempted on average
per unit time, and any attempted move is accepted provi
it does not violate any of the rules above. If it does, the mo
is rejected and the chain remains unchanged.

Notice that this projection of the repton model onto thex
axis would work just as well had we started with a latti

FIG. 1. ~a! The repton model of gel electrophoresis. T
points—reptons—are connected together in a chain, and cons
tive points in the chain must occupy adjacent squares on the lat
or the same square.~b! The projected repton model described
Sec. II. The arrows indicate the possible moves.
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with three or even more dimensions. We conclude that
dynamics of the model is independent of the dimensiona
of the original lattice, as we mentioned briefly in the prece
ing section.

The state of the projected repton model can be speci
by giving thex coordinate of each of theN reptons in the
chain. Alternatively, as Fig. 1~b! makes clear, we could
specify it by describing in turn theN21 links in the chain—
the lines between adjacent reptons in the figure—each
which can be in one of three states: sloping upwards to
left, sloping upwards to the right, or level. In order to com
pletely pin the chain down, we would also have to spec
the absolute position of one of the reptons—say the leftm
one—but since the model is translationally invariant, all
properties can be calculated without knowledge of this va
able. In Fig. 2 we have made use of these new degree
freedom to create an alternative mapping of the model t
one-dimensional particle model. In this mapping each of
N21 links corresponds to a site on a new lattice, and e
site can be in one of three states of occupation, dependin
the state of the corresponding link. Sites corresponding
links which slope upwards to the right are occupied by
particle of one type, which we call typeA, and those corre-
sponding to links which slope upwards to the left are oc
pied by a different type of particle, typeB. Sites correspond-
ing to horizontal links are left empty. It is not hard to sho
that the dynamics of the particles is as follows:~i! Particles
in the interior of the chain are conserved;~ii ! no two particles
may coexist at the same site, regardless of their types;~iii ! a
particle adjacent to an empty site can move to that site;~iv!
a particle at one of the ends of the chain can fall off the ch
and vanish;~v! if one of the end sites on the chain is empt
a new particle of either type can appear there. As before
possible moves are attempted once each on average pe
time. Moves which violate none of the rules above are
ways accepted. All others are rejected. The particles ar
some ways akin to fermions, but their dynamics is co
pletely classical in nature, so we prefer to regard them s
ply as hard-sphere classical particles.

As far as the diffusion of the repton chain is concerne
we can show that if a particle of typeA enters the system a
the left-hand end and migrates all the way to the right, a
falls off, then the average position of the chain moves o
step in the positivex direction. It also moves one step in th
positivex direction if a particle of typeB moves across the
system from right to left. Moves in the opposite directio
correspond to motion of the average position in the nega
x direction.

By employing this particle mapping of the repton mod

cu-
e,

FIG. 2. The mapping of the projected repton model onto a p
ticle model. There are two types of particle, which we labelA and
B. No two particles may coexist on the same lattice site, but oth
wise they are free to diffuse about the lattice.
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56 3471DIFFUSION CONSTANT FOR THE REPTON MODEL OF . . .
we have been able to improve considerably on previous
culations of the model, both numerical and exact.

III. NUMERICAL CALCULATIONS

If we were to simulate our particle version of the rept
model directly, employing the dynamics described above,
resulting calculation would be entirely equivalent to, and
faster than, a direct simulation of the projected repton mo
However, we can speed the calculation considerably by
serving that, in the zero-field case we are considering h
the dynamics of the two types of particles,A andB, is iden-
tical. Whether a particular particle is of typeA or of typeB
makes no difference whatsoever to the probability of the s
tem taking a particular path. Thus, it is possible to carry
the entire simulation without assigning any types to any
the particles—we can assign types to them at the end inst
In fact, the best statistics are derived by making in turn ev
possible assignment of particle types to particles and ave
ing over all of them. If we denote bynA→ and nA← the
number of particles of typeA which pass through the syste
from left to right and from right to left, respectively, durin
the course of our simulation, and similarly for particles
type B, then the mean square distance^d2& traveled by the
repton chain in thex direction, wherê & indicates an averag
over all possible assignments of particle types, is

^d2&5^@~nA→1nB←!2~nA←1nB→!#2&

5^@~nA→2nB→!2~nA←2nB←!#2&

5^~nA→2nB→!2&1^~nA←2nB←!2&

5^~nA→1nB→!&1^~nA←1nB←!&

5n→1n← . ~2!

The third line here follows from the statistical independen
of the numbers of particles of each type, and the fourth l
follows from the properties of random walks in one dime
sion. The variablesn→ andn← in the last line are the tota
numbers of particles passing across the system in each d
tion during the course of the simulation. The diffusion co
stant in thex direction is related tôd2& by

D5
^d2&
2t

, ~3!

wheret is the length of time~as defined in Sec. I! for which
the simulation ran.

In order to calculaten→ and n← , we need to count the
number of particles falling off the right-hand end of the sy
tem which entered from the left, and the number falling
the left which entered from the right. Those which enter a
leave at the same end make no contribution. Thus we nee
keep a record for each particle in the system of whethe
entered at the left- or the right-hand end. We can do this
labeling each with either an ‘‘L ’’ or an ‘‘ R,’’ which in effect
means that we have two types of particles again.

Using a multispin coded program which simultaneou
performs 32 simulations using the algorithm described h
we have calculated the value of the diffusion constant for
repton model for systems of up toN5250 reptons. The runs
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were of a variety of lengths up to a maximum of around 111

Monte Carlo steps for the largest systems. For each run
discarded the first 10% of the data to allow for equilibratio
The results of the simulations are shown in Fig. 3. Barkem
Marko, and Widom@11# have conjectured, on the basis
numerical results for systems of up toN5100 reptons, that
DN22 1

3 scales for large system sizes asN22/3. This scaling
is indicated as the dashed line in the figure. As the gra
shows, our results for values ofN above 100 appear to con
firm this conjecture.

IV. EXACT CALCULATIONS

The L- and R-type particles introduced in the precedin
section are interesting in their own right, since, as we n
show, they lead to an exact solution of the model for sm
values ofN. Their dynamics is almost the same as that of
A and B particles of the preceding section: they are co
served, can hop either left or right into empty spaces,
particles at the end of the chain can fall off altogether, and
these moves are attempted once on average per unit t
However, if one of the sites at the end of the chain is emp
a new particle appears and fills it on averagetwice per unit
time, rather than once as before. To see this, recall that
ticles of typesA andB both attempted to fill empty end site
once each on average per unit time in our previous versio
the model. The total rate of attempted particle entry at eit
end is therefore two particles per unit time. Other than th
things remain as before: all attempted moves are accept
they do not violate any of the dynamical rules, otherw
they are rejected.

The total rate then at which particles of typeL fall off the
right-hand end of the chain is simply one times the density
L particles at the rightmost site, and similarly for particles
type R at the left-hand end. Since the system is, on avera
completely left-right symmetric, we can define a dens
function r( i ) such that

FIG. 3. Results for the diffusion constantD of the repton model
for systems of up toN5250 reptons. The circles are exact resu
calculated using the transfer matrix method of Sec. IV. The squ
are numerical results obtained by the Monte Carlo method
scribed in Sec. III. We have plotted the data asDN22

1
3 againstN

on logarithmic scales in order to test the scaling form hypothesi
in Ref. @11#. The dashed line indicates the slope expected if t
scaling form holds.
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3472 56M. E. J. NEWMAN AND G. T. BARKEMA
rL~ i !5rR~N2 i !5r~ i !, ~4!

whererL( i ) andrR( i ) are the densities of the two types
particles at thei th site ~counting, let us say, from the left!.
Now using Eqs.~2! and ~3! we can write the diffusion con
stant as

D5
n→1n←

2t
5

2r~1!t

2t
5r~1!. ~5!

It would be possible to calculater(1), thedensity of the
minority particles at the first site on the lattice, using
Monte Carlo technique. However, the results forD would be
less accurate than those calculated with the methods o
preceding section. On the other hand, Eq.~5! does lend itself
to exact calculations. Notice that the number of states of
model with theL andR particles is considerably smaller th
the number of states of the one with theA andB particles.
The reason is that, since all particles of typeL enter from the
left, all typeR ones from the right, and the two cannot pa
one another, all lawful states of the system consist of at m
two domains, one on the left containing onlyL particles and
vacancies, and one on the right containing onlyR particles
and vacancies. Thus, once we know the position of the
which separates these two domains, the state of any par
lar site is completely determined if we know only whether
is occupied or not. There areN possible positions for the
line, and henceN2N21 is an upper bound on the number
states of the system. In fact the actual number of states t
out @14#, as we mentioned in Sec. I, to be (N11)2N22. This
figure is considerably smaller than the 3N21 states of the
system with theA and B particles, or equivalently of the
ordinary projected repton model, which Widomet al. used
to construct their transfer matrix. This suggests that it mi
be possible to construct a new smaller transfer matrix wh
would allow us to calculate the diffusion constant of t
model exactly for larger values ofN.

The construction of such a matrix turns out to be char
ingly straightforward. The matrix possesses one row and
column for each state of the system with theL- andR-type
particles. Its off-diagonal elements are zero except fo
sparse set of elements connecting pairs of states which
accessible to one another via the dynamics of the model.
diagonal elements are fixed to ensure overall particle con
vation. The slowest-decaying eigenmode of this matrix r
resents the equilibrium occupation probabilities of each
the states of the chain, and a simple linear combination o
elements gives the density of particles of either type at
site, the densityr(1) being a particular case. We have ca
culated the eigenvector of this mode numerically for syste
with sizes fromN53 up to N520. Since the matrix is
sparse, the quickest method of doing this is simply by
peated multiplication into an initial trial vector. In fact, fo
each system size studied, we have used two trial vec
chosen so that the value ofr(1) calculated from them con
verges towards the equilibrium value from opposite dir
tions, ensuring that we have rigorous bounds on our val
as well as an absolute measure of convergence. The valu
r(1) can then be used in Eq.~5! to calculate the diffusion
constant. The resultant values forDN2 are given in Table I
and also shown in Fig. 3. The values forN up to 12 confirm
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those obtained by Widomet al. @9# and by Szleifer and Bis-
seling@10#. Those forN513 up to 20 are new. No errors ar
given in the table; the figures are exact to the quoted ac
racy.

The functionr( i ) is also interesting in its own right. In
Fig. 4 we have plotted its value for systems of sizeN520,
50, 100, and 200 on linear and logarithmic scales, calcula
numerically. AsN increases, the curves on the linear p
appear to become more and more like a straight line w
short curved regions at each end. It seems possible tha
asymptotic form of the function is linear, with end effec

TABLE I. Values of DN2 calculated using the transfer matri
method described in the text. The values are exact to the accu
quoted.

N DN2 N DN2 N DN2

3 1.000000 9 0.703951 15 0.596297
4 0.926984 10 0.678924 16 0.585081
5 0.864908 11 0.657549 17 0.574996
6 0.812065 12 0.639096 18 0.565874
7 0.769057 13 0.623006 19 0.557579
8 0.733582 14 0.608851 20 0.550001

FIG. 4. The functionr( i ) defined in Eq.~4!, plotted for systems
of sizeN520, 50, 100, and 200 on~a! linear scales and~b! loga-
rithmic ones. Close to the end of the repton chain~small i ) r( i )
appears to vary as a power law withi . The measured exponent o
the power law is 2.7660.03.
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whose region of influence tends to some finite limit. T
logarithmic plot sheds further light on the behavior at t
ends of the chain. As it shows,r( i ) appears to becom
power-law in form for smalli asN becomes large. The ex
ponent of the power law is measured to be 2.7660.03.

Consideration ofr( i ) also offers a hint of a possible com
plete analytic solution of the repton model. The particle v
sion of the model considered here is a particular case
class of models known as asymmetric exclusion models
recent work, Derridaet al. @12# and independently Stinch
combe and Schu¨tz @13# have found exact analytic solution
for the density function equivalent to ourr( i ) for a number
of models of this class for all values ofN. The models they
solved are simpler in a number of respects than the mo
studied in this paper, and applying their techniques to
model would not be a trivial task. However, Eq.~5! tells us
that, should such a solution prove possible, we would imm
diately have an expression for the diffusion constant of
repton model for all values ofN. It is certainly an intriguing
prospect.

V. CONCLUSIONS

In this paper we have studied the Duke-Rubinstein rep
model of DNA reptation in an agarose gel. We have int
duced a mapping of the model onto a particle model in wh
hard-sphere particles hop at random on a finite o
dimensional lattice. We have demonstrated that the diffus
constantD of the polymer in the gel is proportional simpl
to the average rate at which these particles cross from
side of the lattice to the other, and we have made use of
fact to formulate a highly-efficient Monte Carlo algorith
for calculating this diffusion constant. Using this algorith
-
a
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we have calculated values ofD for systems of up toN5250
persistence lengths. These results confirm hypotheses
forward earlier concerning the scaling ofD with the system
size.

We have also employed our particle version of the rep
model to construct a transfer matrix whose dominant eig
vector is directly related to the value of the diffusion co
stant. We have numerically calculated this eigenvector,
hence extracted exact values forD for systems up toN520.

Finally, we have drawn a connection between our parti
version of the repton model and the asymmetric exclus
models which have been solved exactly by Derri
et al. and by Stinchcombe and Schu¨tz. We conjecture that it
may be possible to use the techniques they employed, a
with the theory developed in this paper, to find a compl
analytic solution for the diffusion constant of the repto
model for all system sizes.

Note added. Recently we became aware of Ref.@15#, in
which exact values for the diffusion constant of the rept
model are calculated for values ofN up to 20 using a method
entirely different from the one described here. We tha
Michael Prähofer for bringing this to our attention.
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